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The classical problem of the diffusion of heat in a homogeneous medium is reexamined, the medium being
confined by fixed boundaries maintained at a fixed temperature. When the thermal diffusivity is small, the
relaxation of the temperature of the medium to that of the boundary proceeds on two time scales, one associ-
ated with a lightly damped high-frequency acoustic mode and the other with an aperiodically damped diffusive
mode. Considering for simplicity a spherical configuration, it is shown that the latter does not obey the
classical linear heat conduction equation.
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I. INTRODUCTION

The low frequency relaxation to equilibrium of a thermal
disturbance in a continuous medium with stationary bound-
aries is generally described, in the linear approximation, by
the thermal diffusion equation ��1�, Eq. �50.4��,

�T/�t = ��2T , �1�

where T is temperature, �=� /�cp is thermal diffusivity, � is
density, � is thermal conductivity, cp=T��s /�T�p is heat ca-
pacity at constant pressure p, and s is entropy per unit mass;
T, p, s, and � are functions of position x and time t but
deviate so slightly from constant values that the � in Eq. �1�
is constant and this is what is meant by referring to Eq. �1� as
being true in the linear approximation. Nevertheless it is the
equation generally found in textbooks to describe the trans-
mission of heat.

The main purpose of this paper is to demonstrate a sur-
prising fact: under the specified conditions, Eq. �1� does not
describe long wavelength thermal diffusion correctly. As an
example of the more general situations to which the analysis
of this paper apply, consider a spherically symmetric thermal
disturbance in a spherical region of radius R of homogeneous
material bounded by stationary impermeable walls main-
tained at constant fixed temperature. In this case, we may use
spherical coordinates �r, �, �� for position x so that T
=T�r ,� ,� , t�; here r is distance from the center of symmetry.
An analysis of the low frequency response indicates that T is
governed by

�T

�t
= ��2T +

�T

�cp

�p

�t
, �2�

in which �=−�−1��� /�T�p is the thermal expansion coeffi-
cient. The last term, which is associated with radial motion
within the region associated with thermal expansion, is in
general nonzero. We show, in the case of small �, that the
last term in Eq. �2� can be transformed for the thermal dif-
fusion modes into an expression involving T. The equation
then governing T and replacing Eq. �1� is shown to be

�T

�t
− ��2T =

3��	 − 1�
R

� �T

�r
�

r=R

, �3�

where 	=cp /cv and cv=T��s /�T�� is the heat capacity at
constant volume. This gives decay times that are different
from the ones usually presented in textbooks �see, for ex-
ample, ��1�, p. 208��.

In the limit in which the thermal expansion coefficient
vanishes, there is no difference between Eqs. �1� and �3�.
When the thermal expansion coefficient is nonzero, however,
the time-varying temperature produces a time varying den-
sity that creates divergence or convergence in the velocity,
and this couples to the sound field, so producing the devia-
tion from Eq. �1� represented by the right-hand side of Eq.
�3�. The two physical rates that characterize the sound field
and diffusion are c /R and � /R2, where c is the speed of
sound: c2= ��p /���s. Depending on which of these is the
larger, the thermal mode has a high or low frequency char-
acter. Equation �3� applies in the low frequency limit, but
both limits are examined in this paper.

A. Basic equations

We use the same notation as �1�, in terms of which the
conservation laws of mass, momentum, and energy are

d�

dt
= − � � · v , �4�

�
dv

dt
= − �p , �5�

�T
ds

dt
= � · �� � T� , �6�

where v is the fluid velocity and d /dt=� /�t+v ·� is the mo-
tional derivative. Our independent thermodynamic variables
will be � and T. With this in mind, we observe first that
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d� = � ��

�p
�

T

dp + � ��

�T
�

p

dT = cT
−2dp − ��dT , �7�

where cT is the isothermal sound speed: cT
2 = ��p /���T. It fol-

lows that

�p = cT
2 � � − cT

2�� � T . �8�

Second, by a Maxwell relation, we also have

ds = � �s

�T
�

�

dT + � �s

��
�

T

d� = � �s

�T
�

�

dT + � �s

�p
�

T
� �p

��
�

T

d�

= � �s

�T
�

�

dT +
1

�2� ��

�T
�

p
� �p

��
�

T

d� = cv
dT

T
− �cT

2 d�

�
. �9�

It follows that

�T
ds

dt
= �cv

dT

dt
− �TcT

2 d�

dt
. �10�

With the help of Eqs. �4�, �8�, and �10�, we may write Eqs.
�5� and �6� as

�
dv

dt
= − cT

2 � � + cT
2�� � T , �11�

�cv
dT

dt
= − �TcT

2� � · v + � · �� � T� . �12�

II. PERTURBATION EQUATIONS:
EIGENVALUE PROBLEM

The basic state, the oscillations of which are to be studied,
is defined by

p = p0,

T = T0,

� = �0. �13�

where p0, T0, and �0 are constants. In what follows �, cT, cp,
cv, 	, and � take their values in the basic state and are con-
stants too.

Write

p = p0 + p�,

T = T0 + T�,

� = �0 + ��, �14�

and substitute into Eqs. �4�, �11�, and �12�, the linearized
form of which become

���

�t
= − �0 � · v , �15�

�v

�t
= −

cT
2

�0
� �� − cT

2� � T�, �16�

�T�

�t
= 	��2T� −

�	 − 1�
�

� · v , �17�

where we have used the thermodynamic relation cp−cv
=�2TcT

2. Make the equations dimensionless by using the ra-
dius R of the basic configuration as unit of length and R /cT,
cT, �0, cT

2�0, and �−1 as units of t, v, ��, p�, and T�. Then
p�=��+T�. Define 
 by


2 =
�

RcT
. �18�

From Eq. �16�, we may write

v = − ���, �19�

and obtain from Eqs. �15�–�19�

���

�t
= �� + T�, �20�

���

�t
= �2��, �21�

�T�

�t
− 
2	�2T� = �	 − 1��2��. �22�

Equations �20� and �21� imply

�T�

�t
=

�2��

�t2 − �2��. �23�

Equations �22� and �23� define a linear homogeneous system
for T� and �. It is fourth order in space and third order in
time. Supplemented by four homogeneous boundary condi-
tions, it defines an eigenvalue problem for �, the growth rate
of solutions proportional to e�t. Regularity of the solutions at
the center, r=0, of the fluid implicitly provide two of these
boundary conditions, so that only two further boundary con-
ditions need be applied at the boundary, r=1, of the fluid. As
stated above, we shall focus on the case in which the bound-
aries are fixed stationary impermeable walls maintained at
constant fixed temperature, so that

vr = T� = 0 at r = 1. �24�

Nevertheless, we shall first consider the simpler, though in-
appropriate, case

T� = 0 and p� = 0 at r = 1, �25�

because these are conditions that lead to the solutions usually
presented in textbooks.

III. DISPERSION RELATIONSHIPS

Equations �21� and �23� admit solutions proportional to

T� = jn�kr�Sn��,��e�t,

�� = −
�� + 
2	k2�
�	 − 1�k2 jn�kr�Sn��,��e�t, �26�

or equivalently
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T� = jn�kr�Sn��,��e�t,

�� =
�

��2 + k2�
jn�kr�Sn��,��e�t, �27�

where jn�z� is the spherical Bessel function of order n,
Sn�� ,�� is any surface harmonic of order n, and k and � are
constants; �r ,� ,�� are spherical coordinates. These equa-
tions also show that


2	k4 + �	�1 + 
2��k2 + �3 = 0. �28�

Consider first the implications of conditions �25�. They im-
ply �� �=p�−T�� and by Eq. �21� �2�� vanish on r=1. There-
fore, by Eq. �23�, ���1�=0. This and the first part of Eq. �25�
show that the eigenfunction is a single mode of the form �26�
and �27�, with k any nonzero root of

jn�k� = 0. �29�

Without loss of generality, we may consider only non-
negative roots. The first three are listed for n=0−11 on p.
467 of �2�; for n=0−2 they are �approximately in the case of
n=1,2�

k = , 2, 3, 4, . . . for n = 0, �30�

k � 4.493, 7.725, 10.904, 14.066, . . . for n = 1,

�31�

k � 5.763, 9.095, 12.323, 15.515, . . . for n = 2,

�32�

. . . �33�

Equation �28� is now a cubic equation for � that directly
determines three possible eigenfrequencies. Consistent with
physical expectations, none of these has a positive real part.
This is perhaps most easily confirmed by applying Routh’s
rule and by recalling that necessarily 	�1. For 1�	�9,
two of the roots of Eq. �28� are complex for all k and 
. In
what follows, we shall be mainly interested in the case 

�1. By Eq. �28�, the eigenfrequencies are then approxi-
mately

� = � ı	1/2k −
1

2
�	 − 1�k2
2, �34a�

� = − k2
2. �34b�

In dimensional units, Eqs. �34a� describe lightly damped os-
cillations of frequency kc, where c=	1/2cT is the adiabatic
sound speed. These high frequency “acoustic modes” are not
our main concern. Equation �34b� describes slow aperiodic
decay on the thermal time scale 1 /�k2 and is the thermal
mode we seek. The eigenfunctions �26� or �27� give

T� = jn�kr�Sn��,��e�t,

vr = −
�k

��2 + k2�
jn��kr�Sn��,��e�t. �35�

Since vr is generally nonzero on r=1, the boundary moves
radially.

We now abandon Eq. �25� and consider the implications
of the more realistic boundary conditions �24�. The analysis
is a little more complicated. For the putative �, Eq. �28� is a
quadratic equation for k2, determining �k1 and �k2, but only
two of these, k1 and k2 �say�, give independent solutions; the
results that follow are unchanged if k1 and/or k2 are reversed
in sign. We shall refer to the solutions derived from k1 and k2
as “mode 1” and “mode 2.” In general both of these are
required in order to satisfy Eq. �24�. We therefore now take

T� = �T1jn�k1r� + T2jn�k2r��Sn��,��e�t, �36�

where T1 and T2 are constants. Corresponding to the two
alternatives �26� and �27�, we then have

vr = �T1
�� + 
2	k1

2�
�	 − 1�k1

jn��k1r� + T2
�� + 
2	k2

2�
�	 − 1�k2

jn��k2r�	
�Sn��,��e�t, �37�

vr = − �T1
�k1

��2 + k1
2�

jn��k1r� + T2
�k2

��2 + k2
2�

jn��k2r�	Sn��,��e�t.

�38�

These alternatives give two equivalent forms of the eigen-
value condition that Eq. �24� imply:

�� + 
2	k1
2�

jn��k1�
k1jn�k1�

= �� + 
2	k2
2�

jn��k2�
k2jn�k2�

, �39�

1

��2 + k1
2�

k1jn��k1�
jn�k1�

=
1

��2 + k2
2�

k2jn��k2�
jn�k2�

. �40�

Sometimes the analysis that follows is more transparent us-
ing Eq. �39� rather than Eq. �40�, and sometimes the reverse.

In what follows, we shall examine the consequences, Eqs.
�39� and �40�, of Eq. �24� for 
�1. In that case it is found
that 
�
 is small compared with 
−2. The approximate solu-
tions of Eq. �28� are then

k1
2 = −

�2

	
+

�	 − 1�
	2 �3
2 + ¯ ,

k2
2 = −

�


2 −
�	 − 1�

	
�2 + ¯ , �41�

from which it follows that

k1 = � ı� �

	1/2 −
�	 − 1�
2	3/2 �2
2 + ¯	 ,
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k2 = � ı��1/2



+

�	 − 1�
2	

�3/2
 + ¯	 . �42�

These appear to be expansions in powers of 
2 but, since �
will be expanded in powers of 
 below, they too are expan-
sions in powers of 
.

IV. HIGH FREQUENCY (ACOUSTIC) MODES

In this section we investigate the high frequency solutions
of the system, i.e., the two modes for which �=O�1�. For
these, k1=O�1� and k2= �
−1�. To leading order Eqs. �39� or
�40� give

jn��k1� = O�k2
−1� = O�
� �43�

so that

k1 = k10 + 
k11 + O�
2� �44�

where

jn��k10� = 0. �45�

The first three roots of Eq. �45� are listed for n=0−13 on p.
468 of �2�; for n=0−2 they are approximately

k10 � 1.166, 4.604, 7.790, 10.950, . . . for n = 0,

�46�

k10 � 2.461, 6.029, 9.261, 12.445, . . . for n = 1,

�47�

k10 � 3.633, 7.367, 10.664, 13.883, . . . for n = 2,

. . . �48�

By Eqs. �44� and �42�

� = � ı	1/2k1 + O�
2� = � ı	1/2k10 � ı	1/2k11
 + O�
2� .

�49�

By Eq. �45�, it also follows by Taylor expansion that

jn��k1�
k1jn�k1�

�
jn��k10�

k10jn�k10�
+ 
k11� jn��k�

kjn�k�	k=k10

= 
k11� jn��k�
kjn�k�	k=k10

= − 

k11

k10
�1 −

n�n + 1�
k10

2 � .

�50�

For all positive roots of Eq. �45�, k10�n+ 1
2 ; see ��3�, Sec.

15.3�. It follows that k10
2 �n�n+1�, so that the quantity in

parenthesis in Eq. �50� is positive. We choose the root k2 of
Eq. �42� with a positive imaginary part:

k2 =
��1 + ı�



�	k10

2

4
�1/4

+ O�1� . �51�

Since Im�k2��0 and 
k2
�1,

jn��k2�
k2jn�k2�

= −
ı

k2
+ O�
2� =

�− 1 � ı�
�4	k10

2 �1/4
 + O�
2� . �52�

It now follows from Eq. �39� that

k11

k10
�1 −

n�n + 1�
k10

2 � = �	 − 1�
�− 1 � ı�
�4	k10

2 �1/4 , �53�

i.e.,

k11 = �− 1 � ı��	 − 1�� k10
2

4	
�1/4�1 −

n�n + 1�
k10

2 �−1

, �54�

so that, by Eq. �49�,

� = � ı	1/2k10 + �− 1 � ı��	 − 1��	k10
2

4
�1/4

��1 −
n�n + 1�

k10
2 �−1


 . �55�

As expected, Re����0.
The approximate form of the eigenfunction can be found

from Eqs. �36� and �37� or �38�. To leading order

vr = �
ı	1/2

�	 − 1�
jn��k10r�
jn�k10�

Sn��,��e�ı	1/2k10t �56�

is uniformly valid but T� exhibits a boundary layer at r=1,
the first term in its �composite� expansion being

T� = � jn�k10r�
jn�k10�

− eık2�1−r�	Sn��,��e�ı	1/2k10t, �57�

where k2 is given by Eq. �51�.

V. LOW FREQUENCY (PROSPERETTI) MODE

In this section we investigate the low frequency solution
of the system. For this, �=O�
2�, so that k1=O�
2� and k2
=O�1��k1. The modes n=0 and n�0 require separate treat-
ment. This is because

k1jn��k1�
jn�k1�

� �−
1

3
k1

2 for k1 → 0 and n = 0,

n for k1 → 0 and n � 0.
 �58�

A. Radial modes, n=0

By Eq. �58�, both Eqs. �39� and �40� give, to leading
order,

�	 − 1�
k2j0��k2�
j0�k2�

=
�


2

j0��k1�
k1j0�k1�

= −
�

3
2 = 1
3k2

2 �59�

or

�	 − 1��cot k2 −
1

k2
� = 1

3k2, �60�

the roots of which are

k2 � 3.591, 6.566, 9.625, . . . for 	 = 5
3 , �61�

k2 � 3.448, 6.462, 9.548, . . . for 	 = 7
5 . �62�

Therefore
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�/
2 � − 12.894, − 43.118, − 92.649, . . . for 	 = 5
3 ,

�63�

�/
2 � − 11.887, − 41.755, − 99.168, . . . for 	 = 7
5 .

�64�

These values may be contrasted with the results obtained if
the procedure outlined on p. 207 of �1� is followed: by Eqs.
�33�, �34a�, and �34b�, these are, for all 	,

k2 = ,2,3, . . . ,

�/
2 � − 2, − 42, − 92, . . . . �65�

To leading order, the eigenfunctions corresponding to solu-
tions of Eq. �60� are proportional to

T� = �1 −
j0�k2r�
j0�k2� 	e�t, �66�

vr =

2k2

�	 − 1���	 − 1�
j0��k2r�
j0�k2�

− 1
3k2r	e�t. �67�

B. Nonradial modes, nÅ0

The frequencies of the radial modes depended on 	, albeit
weakly. Those of the nonradial modes are independent of 	
to leading order. By writing Eq. �40� as

��2 + k2
2�

jn�k2�
k2jn��k2�

= ��2 + k1
2�

jn�k1�
k1jn��k1�

→ 0 for � → 0,

�68�

it is immediately apparent that, to leading order,

jn�k2� = 0. �69�

This is the same dispersion relationship as was obtained for
the illustrative example discussed in Sec. IV, and the values
of k2 and � /
2 are again given by Eqs. �33� and �34b�, the
n=0 modes being ignored since they were dealt with in the
last section. To leading order, the eigenfunctions are propor-
tional to

T� = jn�k2r�Sn��,��e�t,

vr = 
2k2�jn��k2r� − jn��k2�rn−1�Sn��,��e�t. �70�

The T� eigenfunction is the same as in Eq. �35� but obviously
vr is different since it must vanish on r=1.

VI. INTERPRETATION

One objective of this section is to demonstrate that the
results of Secs. V A and V B for the low frequency modes
may be derived from an approximation devised by Prosper-
etti �4�. We also aim to show how that approximation leads
naturally to Eq. �3�. We revert to dimensional units.

The relation

dp

dt
= � �p

��
�

T

d�

dt
+ � �p

�T
�

�

dT

dt
= cT

2 d�

dt
+ cT

2��
dT

dt
, �71�

may, by Eqs. �4� and �12�, be written as

dp

dt
= − c2��� · v − ���2T� . �72�

�We here made use of the relations cT
2 =c2 /	 and cp=cv

+�2TcT
2.� Prosperetti �4� argues that, at low frequencies, the

pressure has time approximately to equalize across the sys-
tem, i.e., p is almost uniform in space though it remains
time-dependent. This implies that Eq. �72� can be replaced
by

� · �c2��v − �� � T�� = − ṗ = − � · �ṗr/3� , �73�

where ṗ=�p /�t. Then, for irrotational flows,

v = �� � T −
ṗ

3c2�
r + ��, or �� = − ��T +

ṗr2

6c2�
− � ,

�74�

where �2�=0. If r=R�� ,� , t� is the boundary, Eq. �74� gives

Ṙ = ��� �T

�r
�

r=R

+
��

�r
−

ṗ

3c2�
R . �75�

Then, by Eq. �74�,

v = �� � T + �Ṙ − ��� �T

�r
�

r=R

− � ��

�r
�

r=R
	 r

R
+ �� ,

�76�

� · v = ���2T +
3

R
�Ṙ − ��� �T

�r
�

r=R

− � ��

�r
�

r=R
	 . �77�

Substituting these results into Eq. �12�, and ignoring terms of
order ��T�2 associated with entropy production �similar to
terms already omitted from Eq. �10��, we obtain

�T

�t
+

Ṙ

R
r
�T

�r
= ��2T −

3�	 − 1�
�R

�Ṙ − ��� �T

�r
�

r=R

− � ��

�r
�

r=R
	 . �78�

We apply Eq. �78� to the eigenvalue problem posed in Sec.

III, for which conditions �24� hold at r=R =const and Ṙ
=0. For the radial modes �n=0�, the only nonsingular solu-
tion of �2�=0 is an inconsequential constant, and Eq. �78�
reduces to

�T�

�t
= ��2T� +

3��	 − 1�
R

� �T�

�r
�

r=R

. �79�

For T��e�t, where � is now dimensional, this gives

d2�rT��
dr2 + k2�rT�� = −

3�	 − 1�
R

� �T�

�r
�

r=R

r , �80�

where k2=−� /�. The required nonsingular solution satisfy-
ing T��R�=0 is
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T� = −
3�	 − 1�

k2R
� �T�

�r
�

r=R
�1 −

sin kr

kr � sin kR

kR
	 . �81�

On differentiating this result, we obtain

�T�

�r
=

3�	 − 1�
sin kR

� �T�

�r
�

r=R
� cos kr

kr
−

sin kr

�kr�2 	 . �82�

Applying this result at r=R, we recover the dimensional
form of Eq. �60�.

For the nonradial modes �n�0�, Eq. �75� gives

� ��

�r
�

r=R

− ��� �T�

�r
�

r=R

= 0, �83�

and Eqs. �78� and �76� become

�T�

�t
= ��2T�,

v = �� � T� + �� , �84�

which gives

T� = jn�kr�Sn��,��e�t, where jn�kR� = 0. �85�

The nonsingular solution of �2�=0 is proportional to
rnSn�� ,��e�t and Eqs. �83� and �85� give

� = − n−1��kRjn��kR��r/R�nSn��,��e�t �86�

so that, by Eq. �84�,

vr = ��k�jn��kr� − jn��kR��r/R�n−1�Sn��,��e�t. �87�

Equations �85� and �87� are the dimensional forms of Eqs.
�69� and �70�.

VII. CONCLUSIONS

We were led to Eq. �3� during efforts to understand the
temperature inside a collapsing bubble of gas that is sur-

rounded by a fluid; see Hopkins et al. �5�. These bubbles
expand during the rarefaction phase of a sound field and
collapse during the ensuing compression. The time scale for
the expansion may be much longer than the time scale of the
collapse. As a consequence, the expansion may be essentially
isothermal, whereas part of the collapse may be nearly adia-
batic. The transition from the isothermal to the adiabatic
phase has a significant effect on the temperature reached in-
side the bubble at its minimum radius, which is when the
flash of light is emitted that gives sonoluminescence its
name. To gain insight into the isothermal to adiabatic transi-
tion, we have employed the approach of Prosperetti �4� to
thermal conduction in a pulsating bubble. In the limit in
which pressure variations are neglected, he arrived at a solu-
tion that, in dimensional variables, is

v =
Ṙ

R
r +

��

�cp
��T − � �T

�r
�

r=R

r

R
	 . �88�

It may be seen that, even when Ṙ=0, there is a radial flow in
the bubble that, when substituted into Eq. �12�, yields the
deviations from Eq. �1� that are contained in Eq. �3�, and that
this accounts for the deviations between Eqs. �61� and �64�
and the textbook result �65�.

The technique described in this paper may also find ap-
plications in other areas of physics, such as mass diffusion
and vorticity dispersion. Our method can also be applied to
other than spherical geometries, for example, to systems pos-
sessing cylindrical symmetry. It remains to be seen whether
such generalizations are significant.
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